ADVANCED END-TO-END SIMULATI ON FOR
ON-BOARD P ROCESSING
(AESOP)

Alan S. Mavcl

Jet Propulsion | .aboratory, California Institute of ‘Technology
4800 Oak Grove Drive, Pasadena, California 91109

1. Infrod uct ion

1cvclopers of data compression algorithms typical ly use their ownisoftware together with commer-
cial packages to i mplement, evaluate and demonst rate their work.  While convenient for an individual
developer, this approach makes it difficult tobuild on or use another’s work without int imate
knowledge of cachcomponent. When several people. or groups work on different patts of the same.
problem, the larger view can be lost. What's neededis a simple picce of software to standin the gap
and link t ogether the efforts of ¢l ifferent people, enabl i ng them to build on cach ot her’s work, and pro-

viding a base for cngincers and scientists to evaluate the parts as a cohesive whole and make design
decisions.

ALSOP (Advanced Yind-to-end Simulation for On- board Processing) attempts to meet this need by
providing a graphical interface to a developer-sclected set of algorithms, interfacing wit h compiled
code and standalone programs, as well as procedures written inthe 1111, and I'V-Wave command
languages. As a proof of concept, ALSOP is outfitted with scveral data compression algorithins
intcgrating previous work on different processors (A'1'& ‘1 138P32C, 11 TMS320C30, SPARC). The
uscr can specify at mn-time the processor onwhich individual paits of the compression should run.
Compressed data is then fed t hrough simulated transtii ssion and uncompression to evaluatet 1ic effects
of compression parameters, noise and error correction algorithms.

The following sections descri be Al (SOP in detail.  Section 2 describes fundamental goals for usabil-
ity. Section 3 describes the implementation.  Sections 4 through 5 describe how to add ncw func-
tionality to the system and present the existing data compression algorithms.  Scctions 6 and 7 discuss
portability and future work.

2. Design Goals
A few goals are central to the design of AESOP, A1iS OP must:

]. Be usable cnough that scientists and system designer s can experiment with their data with litlle
instruction. "There must be clear visual feedback as applications exccute.  The nser must be able to
casily display algorithm data using a variety of display typcs.

2. Be easy to augment. It should be casy to integrate exccutables for which source is vnavailable, as
well as code writlenin compiled languages such as C and FOR'TRAN. Non-programmers should
bcablctouscahigb-level interpreted language 1o add capabilities.

3. Rely on outside development when such is commonly and cheaply available. 1t should provide for
the integration of commercial packages as much as possible.




4. lsolatcitself’ from applications; changes to Al iSOP 1must not requi e that applications be rebuilt 01
otherwise modified.

5. Provide complet ¢ error hand ling. Al {SOP must be i epared to handle internal crrors, user civors anti
crrors in applications, i n auseful way, preserving the currentstate and providing the user options as
much as possible.

6. Cocxist well with other executing software. It should be efficientand flexible in usc of scicen space
and other system resources.

7. Beuser-customizable i n look, ‘1 ‘he user should be able to choose cosmetic features such as user
interface colors, as well as operational defaults, such as which types of displays arc automatically
cnabled.

3. Implementation

'I'he Al iSOP implementation assumes two simple concepts: modules, compiled or interpret able code
which performs specific computations, and a]~ol’i[]1111S, module scqu e nees used to implement complete
applications. ‘J he following sections describe these two concepts in more detail, and then show  bow
t hCy provide abasi Sfor the complete system .

3.1. Modules and Algorithms

Each AXSOP module, compiled or interpreted, has a usage type and some number of input and oul-
put arguments, Input modules arc used to read infiles from disk or bring other data into the system
which t bc user can ‘t practicall y enter from the keyboar d. Compute modules p erform computational
tasks. Output modules are selected a mn-time. by the user and perform data display. Arguments also
have usage types. An inputargument is one read by the module; an output argument is a value or data
item that the module generates.  Update arguments are bot h read and modified by the modu It,. 1 ‘ach
argument also has a data type, as summarizedin“1'able 1.

Table 1 — ALSOP data types

char char 1d char 2d
short short 1d short 2d
int int 1d int 2d
float float 1d float 2d

doublce double l1d  double 2d
string string 1d string 2d
kwd kwd 1d kwd 2d

An Al {SQP algorithn is a sequence of comput ¢ modules where the inputs for each module arc
taken cither from the user or from the output of a previous compute module.  Algorithms are typically
a mixture of compiled and interpreted modules.




3.2, The Dictionary Interface

1dgure 1 shows an overview of Al iSOP implementation.  Scctions 3.2 through through 3.4 will dis-
cuss the major components, beginning with the dictionary interface and continuing wit h codc exccution
and the G1J].

Dictionaries arc ASCllfiles listing available modules (compiled routines, bi nary executables, inter-
pretable procedures) and algorithims (module sequences designed to perform common tasks), AESOYP
looks for one standard dictionary, "stdlib.dict", to comtain generally uscful routines for output display,
local file formats, etc. Uscrs may define any number of other dictionaries to describe modules and
algorithms in specific application areas. ALESOP l0oks for dictionaries inthe local directory, with the
ALSOP executable, and in other directorics specific.d by the user using the AkSOP AVPT . D 1 RS
environment variable. Dictionarics canbe rc.read without Icaving ALSOP to gain across to newly-
defined or modified algorithms and modules. Dictionarics can also contain graphics directives specify-
ing how an algorithm is displayed onthe screen, including labels and boxes. Dictionary entries have
several formats depending on whether they arc defini ng a compiled module, aninterpreted 1 °V-Wave
module or an algorithm.

Entries for compiled modules have the form:
module type name:label: pathname

I’V-Wave module.s are defined similarly, but with the. module inputs and default values following the
pathname. Entries for interpreted PV-Wave modules have the forn:

module type name:label :pathname:
arg usc typejarg data typearg label, [= default],
arg_usc typc, arg data type, arg label,[= default], . . .
arg_usc type, arg_data type, arg label, [= default]

‘The firstline of the entry is similar 1o the entry for the compiled-m odule. Subsequent lines list param-
clers, separated by commas, where cach parameter has ause type, data type and promipt. Initial valucs
may be specified by following the prompt with an equal sign (=) and the value.  Scalars arc considered
user options automatically; higher-dimensioned paramcters arc retrieved from previously-exccuting,
modules. Type conversions are implicit.

Dictionary cntrics for algorithms have the basic form:
algorithm name:label:module, module, . . . modulc,,
Iixtensions to this basic syntax allow the user to group modules in labeled boxes and to lay these
boxes in any dircction,
3.3. The Code Exccution Interlace
AXSOP provides access to two different types of modules: interpreted modules writien in the Pv-
Wave command language and compiled modules writien in C or another high-level language. Both

types of module.s have "gluc functions” whichare called by A1'SOP and call the module code in turn,
'This approach isolates the details of exccuting application code from AYSOP internals.




Implementation Overview

Stdlib |
dictionary " Iconic Motif-based GUI
CAppi | o Graph drawin
dictionary _[Dl;%t!?fnary]_( AESOP )— Erroiramessagegs
errace Core Appl output catching
W Appl parameter valuing
Code Execution S Display control y
Interface
'\’
(" PV-Wave ) 4 Object-code
Interface Dynamic Loader
I I Appl Support Libr
Wave Wave
modcule module r l
Glue Glue
function function
i i
Compiled Compiled
module module




in the case of compiledcode, glue. functions are programmer-writtenand alow Al S 01’ to cal | exc-
cut ables for which source code is unavailable, as wel | as routi ncs writ ten in languages other that 1 C.
‘1 "he glue Tu net ion, writteninC, creates local storage foruse by the function and define.s parameters in
amanner AI{SO]’ canunderstand. ALSOP calls these glue functions using dynamic. loading, further
i sol at ing application routincs from Al i<SOP itself, The parameter definition interface is simple, using
keywords and prograln-callable functions for optimal capabilitics, allowing the interface to be extended
in the future without requiring modification of currently-intcgrated code. Glue functions for compiled
modules take a single argument, an initialization flag. When an algorithm is sclected, AHSOP calls the
glue function for cach compiled module in the algorithm with the initialization flag set 1o 1. At this
time each module uses the Al {SOP de 1 (1) function to descri be its parameters whiere def (1) is
defined:

def (char *prompt, enum use typoe usce, enum data Lype Lype,
void *local addr, char *kwds[], int num kwds, int optionld,
int option?Z, ..., 0)

The glue function will be called a second time, with the initialization flag 0, when the module is actu-
a 'y executed. “1 'he k wd data types provide a simple way to restrict the user’s choice of values. Glue
functions can indicate ancrror in either their initialization or exccution parts by returning -1, causing
AllSol” to stop algorithm execution with that module.

Yor I'V-Wave modules, a generic glue function is supplicd by AESOP. Since PV-Wave modules
have their parameters dcfined inthe dictionary, their glue function nced only be called at execuation
time.,, where it crecates temporary files necded to commnicate with }'V-Wave, instructs I'V-Wave to
read nccessary data, and invokes the I'V-Wave, proceduie. Module parameters listed in the dictionary
and valued by the user before the run arc passed in as arguments to the procedure. The Al tSol’-Wavce
interface uses temporary files and I'V-Wave's cwave ¢ () facility. The Al'Xol’-Wavc. interaction is
transparent to the developer arid user.

When an algorithm is loaded, AXSOP automatically matches up non-user-specifiable parameters. 1t
dots this by comparing thc names of module outputs withthe names of i nputs from su bscquent
modulcs and assigning to cach possible mate.lmp a score. 'Thisscheme will probably need to be
refined in the future. At the moment, close attent ion must be given to an algorithm in development to
make sure AESOP IS attachi ng inputs to outputs as expected.  AESOP USGS dime.nsicmality and data
1 ype toreduce the potenti al for error.  Nevertheless, sitnple generic names arc best, for example, "out-
put image.” rather than "decompression output”. Inthe latler case, a subsequent module, cxpecting,
“input image” might get connecled up with some other “image” in the system, rather than the more
ambiguous "dccompressionoutput”.  Once all the connections have. been made, ANSOP uses the PV-
Wave or dynamic. loading interface as necessary to exccute each module in turp. ALSOP ensures
before each module is exccuted that the inputs to the miodule arc avai lable, cither because the. user
explicitly specified them or because they were generated by a previous module in the algorithm. Sig-
nal handlers arc installed to catch memory usage errors in applications. ) Al iSOP detects such an
crror it stops exceution of the module, restoring itself 10 i Isstate before cxecution started.

3.4. The GUI

‘1 he usability goals described in Section2 arc nactin part by a graphical interface. Most user
interactions canbe done with the mouse. The current status of the system is graphical 1y di splayed.
options prohibited in a specific. context arc hidden until necded to avoid confusion. The implementa-
tionis dividedinto 5 general parls: graph drawi ng, error messages, application output catching,




applicat ion paramcter valuing and display control.

The graph drawing section presents algorithm sclected as dataflow diagrams, Graph drawing is
done using X 11/Motif, with application modules represented by boxes and connected with arrows in a
single-stream pipeline. Modules may be grouped and groups labeled. Groups may be oriented inany
direction, clearly distinguishing different parts of an algorithm, Grouping, labeling and oricnt alien arc
optional and taken from the algorithm specification in the dictionary. When algorithm execute,
module boxes ate highlightedto show progress. Since for large algorithms the graph area may not be

large cnoughto show all the modules, the graph aica scrolls itself 1o keep the carr ently executing
module visible.

‘Theerror messages section alerts the user to Al (SOI-discovered error conditions using popup win-
dows. Al iSOP det ects 39 different error conditions, including fatal memory usage errvors in application
modules. Al {SOP shows a popup window describing the condition and then waits for user ack-
nowledgement before continui rig,.  Yirror messages printed by anapplicationmoduleare also displayed
in popup windows.

Non-error output from an application module is canght and optionall y displayed i n its own window,
When amodule tries to send informational messages to the uscr, ALSOP grabs that output and, if the
user has requested diagnostic output, displays it in a window created for that purposc. Otherwise the
output is discarded. Al iSOP can mai ntai n a separate. window for each module, and switch between
themas the different modules exccute. This capability allows the user to choose which parts and how
much of the execution details to view, and simplifics debugging during module development.

‘v’he application parameier valuing section allows the user 10 give values to optional and required
module parameciers using popup windows. Both interpreted and compiled modules may take parame-
ters.  ‘The user specifics a value for a module parameter using the, pulldownmenu attached to the
module in the graph. AYISOP lets the user enter scalat numnerical quantitics or choose items from lists
using the keyboard. Yor larger parameters like input images the user selects @ module, to use to read in
the required data.  Such modules arc typically defined in the standard library butare otherwise similar
to appl icat ion modules.

Vinally, AESOP allows the uscr to monitor module inputs and outputs using a variety of display
types. When AUESOP staris it builds a list of al output modules listed in the dictionaries. It then sorts
the 1nodules based on data t ype and the dimension of the primary input(s), where a primary input is
definied as aninput such that no other input has a larger nnmber of dimensions, When the user
requests display of a modulcinput or outputusing a module’s menu, AESOP allows the user 10 sclect
a parameter 10 display and then presents a list of outputmodules suitable for displaying that particular
type of vaue. Alternatively the uscr can add a display using the Displays menu. AESOP alows the
user to specil y the dimensionality of the. data and the type of displ ay 1o ¢ cat ¢ using the menu, and
thenpresemtsa listof module parameters displaya ble with that type of output module.. Since some
display modulcs willtake inputs other than the data 10 display, ASOP prompts the user for needed
information; in the case of non-scalar inputs, it offers choices from among the data items currently
available in the system. ‘Thesc capabilitics are provided automatically by AllSol” and do not depend
on the algorithm writer. 'The Displays menu atso allows users to change or remove displays. PV-
Wave has been used to implement most of the current output modutcs.

Figures 2 and 3 show AESOP adding noise to a JP}iG-compressed image and the resulting output
with no error correct i on,




4. Programming Environment

Adding functions or subroutines written in C, FOR'T'RAN and ot her compiled languagesrequi res
only writing the glue function and adding the name and object file pathname to a dictionary. Glue
functions for compiled modules have two pare: the initialization part which defines parameters using
ALSOP’'sdef () function, and an execution part to call the compiled function. Glue functions should
return - J ondiscovering a fatal error anti 0 otherwise. Hrror messages should be writtentost.derr
andinformationalmessagestostclou t.. 1 ‘he dictionary entry for the 1 XCT compute module decl ar es
the type. of the module, its name, the label to usc on the graph, and the pathname of the glue-functicm
object :

compute module jpeg det :DCT:1ib/rpo.so

The glue function must be compiled and linked with the functions it calls into an executable with a
".s0" extension, For SunOS onc would usc:

acc - ¢ -pie glue funcs.c
1d-0Jibrary. so gluc funcs. o funcs to add. o

Generally useful functions should go into the standard library (“stdlib.diet”). Other functions can be
listed in application dictionaries. Once the module, has been specified in one or the other type of dic-
tionary it's available for usc.

Adding code from I'V-Wave and other collllllal~d-lillc-based packages is similar to adding compiled
code., except that parameters arc declared in the dictionary rather than using a glue, function:

oul put modul e {li ¢ck2 :Al Lternatl e Twoe Images :fli ckZ2.pro:
inputu_ char 2d¥irst 1 mage, i nput u char 2d Second 1 mage,
input int Jterations: 20, i nput floal Wait:= 0 .3

Algorithms arc added by simply defining them in the (dictionary as an ordered list of module names:
al gorit hmipeg: IPKG: “jpeg det Jpeg guant 7§ peg huf 1 jpeg decomp

The dictionary syntax allows the user to group modules inlabeled boxes and to lay these boxes in any
direction. A groupis introduced using a vertical bar (1) followed immediately by tile label for the
group, a direction indicator (>, <, "~ or!), alist of spacc-scparated modules forming the group, and the
direction indicator again. The algorithm shown in Yigure 2. was defincd using:

algorithm jpegendtoend: JPEG Fnd-1o- end:
lCompr ess>jpeyg det jpeg qguant Jpeg huff>
IXmittpacket segment addnoisc unsegment unpacket. !
Iheconpres s<jpeg decomp<

S. Data Compression Applications

Application development for AESOYP so far has centered on data compression, but includes simula-
tionof flight-to-ground downlinks. Thus there arc application modules not only for various types of
comipression (JPEG, Rice, one- anti two-dimensional wavelet compression) but also for packetization,




scgmentation, channel coding and noise simulation, providing atru¢c end-to-end vicw from in-flight
data acquisition to the reception of tansmitted data cm 1 the ground.  Supporting the end-to-cnd simula-
tion of compressed data transmission arc a number of computational capabilities (packetization, scg-
mentation and channel coding, and noise simulation) as well as output types.

‘1 *he packetization routine takes compression output and a sct of packet lengths in bits, and breaks
t he outputinto packets at the specified bit bou ndarics. Currently, variable length packets arc formed
such that each packet holds 8 lines of compressed image data.  ‘I-his approach simplifies recovery
should an entire packet be lost since the location of a packetinan output image can bc coded in the
header, and the brecak is guaranteed not to occur in the middle of a pixel, An inverse procedure takes
incoming packets and recombines them into a single bit strcam for decompression.

Because channel coding requites fixed-]ength chunks of input data, packets arc themselves grouped
into interleaved segments of uniform length; segments arc packed into frames. The interleave factor is
an option with a default value of 8, Segmentation currentl y uses Reced-Solomon coding for optional
error correction.  The inverse procedure unencodes the. data and restores the original input packets.
Somc diagnostic information (error counts, frame statist its) is available using Show diagnostics on the
modul€’s mecnu.

A noise simulation module takes compressed, packetized, segmented data and flips bits on a ran-
dom interval. The user can specify the mean number of bits bet ween errors, or turn off noise simul a-
tion altogether. Better noise models arc being developed.

In addition to many output modules in the standard library for reading, writing and displaying vari-
ous data types, of special interest for data compression agorithm arc "Showboth”, which alows a
user to scc two different images side by side, "Flick?", which alternates two images rapidly inthe
same window using a user-chosc,n interval and nuinber of iterations, and "Imagediff™, which displays
the difference of two images using a user-cimen multiplication factor. These arc currently rest ricted
to byte input images. Other modules compute signal-to-noise ratios for most vector and image data
types,

6. Portability

AXSOP currently runs on Sun SPARCstations using SunOS 4.1.3 and Motif. While PV-Wave is
not required, support for it is built in and the current dictionaries usc it for image display. Operating
system dependencies arc minimal.  ALSOP is writtenin ANSI C. AESOP uses dynamic loading to
cxccute compiled modules, which is available on A1X 3.2, 11 PUX 8.0 and VMS 5.0 in addition to
SunOS.

7. Tuture Work

The foundation is in place, but work remains to be done.  AESOP currently relics heavily on PV-
Wave for output displ ay; other packages need to be i ntegrated for portability. Morc output types, par-
ticularly for one-dimensional data, ncedto beimplemented. Support for application-defined data struc-
t urcs would be useful. Some applications may have. trouble wit h Al 1S01'”s redefi nit ion of the C
wrile () routine. Determination of graph connectivity wi] | eventu a | y need enhancement. More con-
trol over output displays needs to be added.




5504 GUIOT

G RaTe

R R S L e




A CONAN A AR
SN
)

» .
i. .,

o
o

SSoaliwiG ]

I

T

[T IVOr S I LN

PRSTEIOVTRIVAN

T

N
g

.||||.ﬂ»|||. 559 GuiCT
r il ady 0 1 RYINT]

e R

LS LS SR S RSP




